Limiting Reagents

Caution: this stuff is difficult to follow at first.

Be patient.

Limiting reagent defined

Given: $4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$

- Q How many moles of NO are produced if __ mol NH₃ are burned in __ mol O₂?
- 4 mol NH₃, 5 mol O₂
- 4 mol NH_3 , 20 mol \bar{O}_2
- 8 mol NH₃, 20 mol O₂
- Here, NH₃ limits the production of NO; if there was more NH₃, more NO would be produced
- Thus, NH₃ is called the "limiting reagent"
- 4 mol NH₃, 2.5 mol O₂
- In limiting reagent questions we use the limiting reagent as the "given quantity" and ignore the reagent that is in excess ...

Limiting reagents in stoichiometry

 $4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$

- E.g. How many grams of NO are produced if 4 moles NH₃ are burned in 20 mol O₂? Since NH₃ is the limiting reagent we will use this as our "given quantity" in the calculation
- Sometimes the question is more complicated. For example, if grams of the two reactants are given instead of moles we must first determine moles, then decide which is limiting ...

Solving Limiting reagents 1: g to mol

 $4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$

- Q How many g NO are produced if 20 g NH₃ is burned in 30 g O₂?
- A First we need to calculate the number of moles of each reactant
- A Once the number of moles of each is calculated we can determine the limiting reagent via a chart ...

- *Choose the smallest value to divide each by
 ** You should have "1 mol" in the same column
- twice in order to make a comparison
- A There is more NH₃ (what we have) than needed (what we need). Thus NH₃ is in excess, and O₂ is the limiting reagent.

3: Stoichiometry (given = limiting)

So far we have followed two steps ...

- 1) Expressed all chemical quantities as moles
- 2) Determined the limiting reagent via a chart Finally we need to ...
- 3) Perform the stoichiometry using the limiting reagent as the "given" quantity
- Q How many g NO are produced if 20 g NH₃ is burned in 30 g O₂?

$$4NH_3 + 5O_2 \rightarrow 6H_2O + 4NO$$

Limiting Reagents: shortcut

- Limiting reagent problems can be solved another way (without using a chart)...
- Do two separate calculations using both given quantities. The smaller answer is correct.
- Q How many g NO are produced if 20 g NH₃ is burned in 30 g O₂? 4NH₃+5O₂→6H₂O+4NO # a NO=

20 g NH₃ x
$$\frac{1 \text{ mol NH}_3}{17.0 \text{ g NH}_3}$$
 x $\frac{4 \text{ mol NO}}{4 \text{ mol NH}_3}$ x $\frac{30.0 \text{ g NO}}{1 \text{ mol NO}}$
= 35.3 g NO

$$30 \text{ g-O}_2 \quad \text{x} \frac{1 \text{ mol O}_2}{32.0 \text{ g-O}_2} \quad \text{x} \frac{4 \text{ mol NO}}{5 \text{ mol O}_2} \quad \text{x} \frac{30.0 \text{ g NO}}{1 \text{ mol NO}} = \frac{22.5 \text{ g NO}}{20.0 \text{ g NO}}$$

Practice questions

- 2AI + 6HCI → 2AICI₃ + 3H₂
 If 25 g of aluminum was added to 90 g of HCI, what mass of H₂ will be produced (try this two ways with a chart & using the shortcut)?
- 2. $N_2 + 3H_2 \rightarrow 2NH_3$: If you have 20 g of N_2 and 5.0 g of H_2 , which is the limiting reagent?
- 3. What mass of aluminum oxide is formed when 10.0 g of Al is burned in 20.0 g of O₂?
- 4. When C₃H₈ burns in oxygen, CO₂ and H₂O are produced. If 15.0 g of C₃H₈ reacts with 60.0 g of O₂, how much CO₂ is produced?
- 5. How can you tell if a question is a limiting reagent question vs. typical stoichiometry?